Note: Page numbers followed by "f" and "t" refer to figures and tables, respectively.

A	adopting agroecological management at
Abiotic stresses, 93	landscape level, 62-63
Active packaging (AP), 172, 175–176	agroecological practices, 56-57
application of AP in foods, 176-181	crop management, 57–62
AD. See Anaerobic digestion (AD)	practices, 35, 57
Aerobic composting, 384t, 385–386	Agroecosystems, 55
Aerobic respiration, 101–102	Agroforestry, 61–62
African Postharvest Loss Information	Air-blast freezing method, 125
System, 107	Alicyclobacillus acidoterrestris, 154
Agricultural/agriculture	Allelopathy, 44
commodity, 90, 93-95	α -amylase, 294
intensification, 62	α-Lactalbumin, 291–292
land, 38–39, 230	Aluminum, 372
management systems, 67-68	Anaerobic digestion (AD), 376-377, 385
practices for sustainable agriculture,	Anaerobic soil disinfestation, 44-45
46-63, 48t	Animal bones, 289
agroecological approach, 54-63	Animal waste valorization, 281, 284–292.
conservation agriculture, 47-54	See also Plant-origin waste
practices optimization	valorization
climate changes and potential impacts	dairy, 284, 291-292
on crop postharvest, 110–113	meat and poultry, 284-289
food loss, 91 <i>t</i>	seafood, 284, 290-291
harvest systems, 98-105	strategies, 284–292, 295 <i>t</i>
on-farm postharvest systems, 105-108	Anthocyanins, 302
preharvest systems, 93-98	Antifreeze proteins, 126, 291
production	Antimicrobial activity, 177
food loss causes in, 91t	Antioxidants, 132, 144
system boundary, 90-92	activity, 144
products, 142, 240	in food, 133–137
losses/waste, 4	cereal products protection, 134
sector, 371–372	fats and oils protection, 133-134
stage, 320–324	fruits and vegetables protection, 135
systems, 56	meat products protection, 135-136
Agro-food waste management, 143	nuts and oil seeds protection, 134
Agrochemicals, 47, 98	packaged foods protection, 136-137
Agroecological/agroecology, 46, 54-55, 235	phenols, 302
approach, 54–63	types, 131–132, 131 <i>f</i>

AP. See Active packaging (AP)	Blanching, 146
Appearance, 349-350	Blending with materials, 193-194
Arabinoxylans, 299	Blood protein derivatives, 289
Ascorbic acid, 136	Boiling point, 185
Ascorbyl palmitate, 131	BoP. See Basket of products (BoP)
Aspergillus, 52–53	Botulinum toxins (Bt toxins), 69, 122
Avure Technologies (Sweden), 148-149	Bovine serum albumin, 291–292
	Bovine spongiform encephalopathy (BSE), 285
В	Bran, 294
Bacillus thuringiensis, 52–53	Brazil, Russia, India, China (BRIC), 25
Barilla Centre for Food and Nutrition	Brevicoryne brassicae, 45-46
(BCFN), 282	Brewer's spent grain, 299
Basket of products (BoP), 318	BRIC. See Brazil, Russia, India, China
composition, 319t	(BRIC)
LCI datasets, 321t	BSE. See Bovine spongiform
life cycle stages and related activities in,	encephalopathy (BSE)
320 <i>t</i>	Bt toxins. See Botulinum toxins (Bt toxins)
BCFN. See Barilla Centre for Food and	Burning bush (Kochia scoparia), 68-69
Nutrition (BCFN)	Business opportunity, 359–360
β-carotene, 136	Butterfly (Pieris rapae crucivora), 45-46
β-glucosidase, 294	Butylated hydroxyanisole (BHA), 131, 133,
β-Lactoglobulin, 291–292	136
Betanin, 302	Butylated hydroxytoluene (BHT), 133-134,
BHA. See Butylated hydroxyanisole (BHA)	179
BHT. See Butylated hydroxytoluene (BHT)	By-product, 279-280
Bibliometric analysis of FLW	
distribution of countries, 7, 8f	C
food supply chain coverage, 8-9	CA. See Conservation agriculture (CA)
temporal trend for year of publications	Calcium (Ca), 97–98
and estimation, 7, 8f	Carbohydrates, 101–102, 174
type of publications, 6, 7f	Carbon, 373
Bifidobacterium, 144-145	Carbon dioxide (CO ₂), 39
Bill Emerson Good Samaritan Food	Carboxyl groups, 190
Donation Act, 382	Carotenoids, 132, 302
Bioactive proteins, 292	Cassava, 293
Biodegradability, 186	starch antimicrobial films, 186
Biodegradable polymers, 174	starch films, 186
"Biological soil disinfestation".	Cavitation, 126–127, 154–156
See Anaerobic soil disinfestation	CEE. See Curcuma ethanol extract (CEE)
Biomacromolecules, 190	Cell wall polysaccharides, 300
Biopolymers, 173, 192-193, 292	Cellophane, 187
films, 187	Cellular fraction of blood, 289
materials, 299	Cellular Manufacturing, 252
Biorefinery, 279–280	Cellulase, 294
Biosensors, 236	Cellulose nanocrystals (CNC), 193
Biotechnological processing, 292	Cereal(s), 292, 294–299
Biotic stresses, 93	cereal-based products, 332
Biovalorization of cereal waste, 294	protection, 134
Biowaste, 300	waste, 299

CFD technique. See Computational fluid	Compost(ing), 237, 294
dynamics technique (CFD technique)	Computational fluid dynamics technique
Channeling configuration, 207–209	(CFD technique), 207-209
Chelating agents, 131, 136-137	Conservation agriculture (CA), 46-54
Chemical methods, 187–190	adoption, 50-51
Chitinolytic enzymes, 291	no-till
Chitinous materials, 290	farming, 51–54
Chlorophylls, 302	and organic agriculture, 54
Cholesterol, 289	Conservation tillage. See Conservation
Citric acid, 294	agriculture (CA)
Citrus waste, 302	Consumer(s), 142
City of Frankfurt, 324–325	behavior, 219
Climacteric respiratory rate, 102	consumer-retailer interface, 348–349
Climate change(s), 34–35, 39, 146, 230,	clusters of factors causing consumer-
241–244	related food waste, 353f
and potential impacts on crop postharvest,	interactions at, 351–355
110-113	food
Closed storage systems, 108	losses, 232
Clostridium botulinum, 121–122, 145	waste, 4, 19–22
CNC. See Cellulose nanocrystals (CNC)	waste behavior, 237
Cognitive collaboration, 239	perception of suboptimal food, 355–358,
Cold chain, 204–217, 205 <i>f</i>	356f
commercial transportation, 207–210	response to retailer actions, 363–365
display at retail, 214–215	transportation and storage by, 215–217
in northern communities, 220–221	Consumption, 349–350
precooling, 205–207	Conventional agriculture, 56
storage at distribution center, 210–213	Conventional extraction methods, 143
transportation and storage by consumers,	Conventional pasteurization processes,
215-217	156-157
around world	Conventional preservation technique.
food loss and waste in different	See Thermal processing—of foods
countries, 219–220	Conventional thermal
refrigeration capacities, 217–219	pasteurization, 153
Cold pasteurization method, 147	processes, 160
Cold plasma treatment (CP treatment), 192	Cooling/chilling technology, 122–124
Collagen, 285–289	Cooperative collaboration, 239
Colorado potato beetle (Leptinotarsa	Corn borer (Ostrinia nubilalis), 52–53
decemlineata), 45–46	Corporate social responsibility (CSR), 359
Commercial sterilization, 122	COST Network, 117–118
Commercial transportation	CP treatment. See Cold plasma treatment
intermodal transportation, 209-210	(CP treatment)
rail transportation, 209	Creatine, 290
sea transportation, 207–209	Crop(ping)
Commodity crops, 374	biodiversity to reducing losses and
Communication, 351–352, 354–355	increasing yields
Communities of practice and learning	benefits of varietal mixture to cope, 63-65
alliances, 240	cropping perennial crops, 65-67
Complete hand harvesting, 99	climate changes and potential impacts on
Complete sterilization, 122	crop postharvest, 110–113

Crop(ping) (Continued)	E
diversifying crop production, 96-97	EB. See Elongation at break (EB)
growth management, 40-41	EC. See European Commission (EC)
loss, 35	Ecological theory, 369–370
management, 57-62	Economic allocation, 322–324
rotation, 58	Electric fields, 160
yields, 34	Electric pulse intensity, 161
Cropping perennial crops, 65–67	Electroheating technologies, 120
Cross-contamination, 145	Electroporation, 157–158
Crustacean cells, 291	Elongation at break (EB), 183
Cryogenic freezing method, 125	Embanox 10, 134
Crystallization temperature, 185	Emissions, 332
CSR. See Corporate social responsibility (CSR)	from agriculture, 320-322
Cultivar and environment, 93–95	from food waste treatment, 327
Curcuma ethanol extract (CEE), 178-179	End of life (EoL), 316, 325–326
	Enthalpy
D	of crystallization, 185
2,4-D, 68-69	of melting, 185
D value. See Decimal reduction time (D	Environmental impact calculation of food
value)	consumption, 319–326
Dairy, 203, 284, 291–292	Environmental Protection Agency, 376–377,
supply chain characteristics, 256–260,	377 <i>f</i>
257 <i>t</i>	Environmental sustainability, 70, 283
Date label, 349-350	Enzymatic/enzymes, 121, 132
DC. See Distribution center (DC)	browning, 135
Decimal reduction time (D value), 120	inactivation, 142–143, 154–155
Decomposition process, 186	methods, 191
Dehydrofreezing, 126	EoL. See End of life (EoL)
Denitrification, 371–372	Escherichia coli, 142–143
Dialdehyde polysaccharides, 190	Essential oils (EOs), 135, 176–178
Diamondback moth (<i>Plutella xylostella</i>),	Estrogen, 289
45–46	Ethanol, 161
Diaries method (D method), 11	Ethylene (C_2H_4), 102
Dicamba, 68–69	European Circular Economy Action Plan,
Diesel-powered machinery, 371–372	315–316
Dietary shift scenarios, 327–330, 331 <i>t</i> ,	European Commission
336–338, 337 <i>t</i>	(EC), 315–316
Direct compression, 147	European corn borer (Ostrinia nubilalis),
Direct seeding. See Conservation agriculture	45-46
(CA)	European food waste program, 117-118
Disperse phase, 155	Exopolysaccharides, 292
Distribution center (DC), 204	Extraction techniques, 143, 146, 151–152,
Domestic labor, 380–381	155–156, 160–161
Double Pyramid model, 282	
Downstream supply chain, 231–232	F
consumer and postconsumer food losses, 232	FAO. See Food and Agriculture
food losses of retailers, 232	Organization (FAO)
Dry animal feed production, 387	Farm losses/waste, 4, 16
Durables, 90–92	Farmer organization, 108–110

Fats	environmental impact calculation,
fat-containing foods, 131	319-326
protection, 133–134	quantification, 327
Feed	reduction, 327–330, 332–336, 335f
animals, 382–384	Food loss(es), 34, 171–172, 211, 227–229,
hungry people, 382	231f, 375
Ferulic acid, 299	in food industry, 229–232
FFVs. See Fresh fruits and	in downstream supply chain, 231–232
vegetables (FFVs)	in upstream supply chain, 229–231
Fibers, 144, 299	reduction, 233–244
Fibrinogen, 289	primary production solutions, 233-235
Fibrinolysin, 289	solutions at handling, storage,
Films, 185	processing, and distribution stage,
film-forming processes, 174	235–236
strategies to improving properties,	solutions at retailers stage, 236–238
187–194	supply chain solutions, 238–244
blending with materials, 193–194	Food losses and waste (FLW), 1–4, 89–90,
chemical methods, 187–190	249–250, 375
enzymatic methods, 191	causes in agricultural production and
physical methods, 191–193	postharvest management, 91t
researches in improvement of	comparison for different development
biopolymeric films, 188 <i>t</i>	levels of countries, 22–23
First Expiry First Out strategy, 236	consumer food waste, 19–22
Fish, 203	data acquisition, 250–251
filleting, 322–324	in different countries, 219–220
meal, 290	farm losses and waste, 16
myofibrillar protein films, 191	food
oils, 135–136	commodity groups, 5
processing, 322–324	supply chain, 4, 5f
waste, 290	geographical and temporal boundary, 5
5-Stages Universal Recovery Process, 304	grouping of countries development
Flame soil disinfestation technique, 45	level, 6t
Flour derived from plasma, 289	identification and destinations along dairy
FLW. See Food losses and waste (FLW)	value chain, 264–270, 265 <i>t</i>
FLWR, 22–23, 22 <i>f</i>	distribution, 270
Food and Agriculture Organization (FAO),	farmer level, 267–268
2, 4, 89–90, 146, 219, 233, 375	processor level, 268–270
Food consumption and waste	implications for future, 22–23
avoidable food waste, 328t	management, 376–386
	aerobic composting, 385–386
baseline results, 332, 333t	
contributions of different life cycle phases, 334 <i>f</i>	feed animals, 382—384 feed hungry people, 382
dietary shift scenarios, 327–330,	industrial uses, 385
336–338	source reduction, 378–382
environmental impacts of food	postharvest losses and waste, 16–18, 18f
consumption of EU-28 average	quantification, 10t
citizen, 334f	advantages and disadvantages, 12–15,
materials and methods, 318–330 basket of representative products, 318	14 <i>t</i>
pasket of representative products, 318	bibliometric analysis of literature, 6–9

Food losses and waste (FLW) (Continued)	in hospitality and institutions, 380-382
methods for, $9-12$, $12f$	in households, 379–380
stakeholder adoption of lean	retailer actions against, 359-363
manufacturing practices for, 251	to suboptimal food, 347-348
tackling, 250	Food waste valorization
VSM as hot spot identification approach	development and implementation,
for, 252–255	303-306
Food packaging, 172, 181–186	feasibility study, 305–306
barrier properties, 183–184, 183f	output definition, 303–304
biodegradability, 186	process design, 304–305
inhibitors, 132f	waste characterization, 303
innovations in	priorities in, 281–282
AP, 175–176	sources and targets, 281, 286t
application of AP in foods, 176–181	strategies, 280, 282
IP, 175	and sustainability, 283
strategies to improving properties of	Food(s)
films, 187–194	additives, 143
sustainable packaging, 172-174	AP application in, 176–181
mechanical properties, 182–183, 183f	EOs, 177–178
microstructural properties, 186	modified atmosphere, 180–181
optical properties, 184	natural extracts, 178–180
packaging functions and properties, 182f	balance method, 11, 15
solubility in water, 184-185	by-product, 279-280
thermal properties, 185	chain, 141
Food preservation technologies, 117–118	commodity groups, 5
cooling/chilling technology, 122-124	composition, 149-150, 154-155,
freezing technology, 124-127	157-159
hurdle concept, 137	contamination sources, 145–146
inhibition of oxidation in foods, 130–137	DCs, 213
antioxidant, 131–132, 131f	degradation, 171–172
using antioxidants in food, 133–137	and drink loss, 227
microwave heating, 128–129	food-grade enzymes, 191
Ohmic heating, 127–128	handling processes, 211
radio frequency heating, 129–130	industry, 229–232
thermal food preservation, 119–122	intrinsic quality, 350
Food Recovery Hierarchy, 376–377	lives, 210
Food Recycling Law, 21–22	matrix characteristics, 150
Food Use for Social Innovation by	production systems, 117–118, 243
Optimizing Waste Prevention	products, 204-205, 282
Strategies project (FUSIONS	quality, 144
project), 2–3	security, 35
Food waste (FW), 34, 141, 205, 227–228,	enhancement by reducing yield loss,
229t, 231–232, 279–281, 370,	33–35
375–376	quantitative and qualitative dimensions,
initiatives, 359–360	37 <i>f</i>
management options, 387	yield loss and, 35–38
quantification, 316	shelf-life extension, 146
recovery hierarchy model, 233, 233f	supply chain, 4, 5 <i>f</i> , 117–118, 315–316
reduction	coverage, 8–9

Foodborne diseases, 117–118	Grapefruit (Citrus paradise), 95
Forced-air cooling, 206	Graphical mapping technique, 252
Free amino acids, 290	Great tit (Parus major L.), 62-63
Free radical chain reaction, 130	Green extraction methods, 143
Freezing technology, 124–127	"Green payments" for soil conservation, 54
antifreeze protein and nucleation protein,	Green Revolution, 41, 63
126	Green technologies, 304–305
dehydrofreezing, 126	Greenhouse gas emissions (GHGs), 33–34,
high pressure freezing, 125–126	370–371. <i>See also</i> Emissions
ultrasound-assisted freezing, 126–127	Greenhouse gases, 110–111, 111 <i>f</i> , 146
Fresh fruits and vegetables (FFVs),	Gross domestic product (GDP), 2, 23
204–205	Ground rosemary leaves, 135
Fruits, 144, 203, 293, 302–303	
protection, 135	Н
Fungal spores, 52–53	Harvest systems, 98–105
Furfural, 299	and handling techniques, 99–101
Fusarium, 52–53	harvesting maturity, $101-105$, $104t$
FUSIONS project. See Food Use for Social	HDPE. See High-density polyethylene
Innovation by Optimizing Waste	(HDPE)
Prevention Strategies project	Heating pressure medium, 147
(FUSIONS project)	Heavy metals, 131, 136–137, 302
FW. See Food waste (FW)	Herbicide-resistant crops (HR crops), 50, 52
I'w. See I'ood waste (I'w)	68–69
G	Herbicides, 47–48, 50, 52–53, 58, 68–69,
GA. See Glutaraldehyde (GA)	71
Gall bladder, 289	High frequency, 142–143
Gamma-ray dosages, 192–193	High intensity, 142–143
Garbage collection method (G method), 11	High pressure freezing, 125–126
Gas	High pressure processing (HPP), 142, 148 <i>f</i>
barriers, 184	advantages and limitations, 151
indicators, 236	effect on food composition,
GDP. See Gross domestic product (GDP)	microorganisms, and applications,
Gelatin, 285–289	149–150
gelatin-based films, 183	as extraction method, 151-152
Gelling agent, 300, 302	technological fundamentals, 147-149
Genetic diversity, 59	High yield varieties (HYV), 38–39, 45
Genetically modified crops (GM crops), 35,	High-density polyethylene (HDPE), 187
68–70	High-intensity US, 142–143
GHGs. See Greenhouse gas emissions	High-quality food products, 142, 234–235
(GHGs)	Hiperbaric (Spain), 148–149
Glass transition temperature, 185	Homogeneity, 193
Global warming scenarios, 110–111, 110 <i>f</i>	Horizontal configuration, 207–209
Glucagon, 289	Hormones, 289
Glucoamylase, 294	Horticultural maturity of agricultural
Glutaraldehyde (GA), 187	commodities, 101
GM crops. See Genetically modified crops	Household food waste, 19
(GM crops)	HPP. See High pressure processing (HPP)
Gold nanoparticles, 184	HR crops. See Herbicide-resistant crops (HF
Google Scholar, 6	crops)

HTST process, 128	L
Hurdle concept, 137	Lactic acid, 294
Hydrocooling, 206	Lactitol, 292
Hydrogen bonds, 149–150	Lactobacillus, 144–145
Hydroperoxide, 130	Lactoferrin, 176, 291-292
deactivators, 131	Lactoperoxidase, 291–292
Hydroperoxyl radicals, 130	Lactose, 292
Hydrophobic interactions, 149–150	Lactulose, 292
Hydroxyapatite, 289	Land availability, 39–41
HYV. See High yield varieties (HYV)	Land equivalent ratio (LER), 60
TIT v. see riigii yiela varieties (III v)	Landscape heterogeneity, 62–63
I	LCA. See Life cycle assessment (LCA)
IAASTD project, 70	LCI model. <i>See</i> Life cycle inventory model
Ice	(LCI model)
cooling, 206	LDPE. See Low-density polyethylene
ice-nucleation protein, 126	(LDPE)
Icebox refrigerators, 216	Le Chatelier's principle, 147
Immersion freezing method, 125	Lean, 241
Immunoglobulins, 289	LeanPath, 380–381
"In package" processing technology,	metrics, 271–272
153–154	
	philosophy, 241
In-vessel composting, 386	Learning alliances, 240
Indirect compression, 147	LER. See Land equivalent ratio (LER)
Induction period, 131–132	Life cycle assessment (LCA), 250–251,
Infectious bacteria, 145	282, 316, 371
Insulin, 289	and systems analysis of food waste
Integrated nutrient management, 49	management options, 387
Integrated pest control, 46	Life cycle inventory model (LCI model),
	318, 321 <i>t</i> , 322
and disease management, 95–96	cultivation of plant-based products or
Integrated pest management (IPM), 46, 56–57	main ingredients, 323 <i>t</i>
Intelligent packaging (IP), 175	farming phase of animal-derived products
Intensification of agriculture, 39, 45	324 <i>t</i>
Intercropping system, 58, 59 <i>f</i>	Lipases, 291
Intermodal transportation, 209–210	Lipid(s), 149–150, 173. See also Protein(s)
Internal organs and glands, 289	lipid-soluble antioxidants, 131, 133–134
Ionic bonds, 149–150	oxidation, 187
IP. See Intelligent packaging (IP)	soluble antioxidant, 135–136
IPM. See Integrated pest management (IPM)	Lipoxygenases, 132, 135
-	Liquid fraction, 174
J	Listeria monocytogenes, 142–143, 145
Joule heating. See Ohmic heating	Literature data (L), 11
Just-In-Time, 252	Liver extract, 289
	Livestock, 50
K	Localization of food production, 373
Kaizen, 252	Logistics, 324–325
Kalikreninsa, 289	Low-density polyethylene (LDPE), 187
Kanban, 252	Lycopene nanocapsules, 186
Kefiran biopolymer, 192–193	Lysozyme, 176

M	Modeling (M), 11
Macro-environment, 352–353	Modified atmosphere, 180-181
Maillard products, 135–136	Moisture content (MC), 90-93, 102-103
Mammalian collagen, 285–289	Mosaic landscape, 62–63
Marama beans (<i>Tylosema esculentum</i>),	Motivation, 355, 357
96-97	MRV principle. See Measurable, reportable,
Marginal waste abatement curve, 376–377,	and verifiable principle (MRV
378f	principle)
Market	Multicropping system, 58
access, 108-110	Mycotoxigenic plant pathogens, 95–96
market-oriented approaches, 234	Myzus persicae, 45–46
Mass loss, 185	
MC. See Moisture content (MC)	N
Measurable, reportable, and verifiable	Natural antioxidants, 131
principle (MRV principle), 25	Natural compounds, 177
Meat	Natural extracts, 178–180
and bone meals, 285	Natural resources, 33-34, 89-90
consumption, 332	Neophobia, 305
and poultry, 284-289	NGOs. See Non-governmental organizations
products, 203	(NGOs)
protection, 135–136	Nisin, 292
Mechanical assisted harvesting, 99	Nitrogen, 45, 373
Mediterranean diets, 330	Nitrogen, phosphorus, and potassium (NPK),
Melting point, 185	97–98
Mesophiles, 124	Nitrous oxide (N_2O) , 371–372
Methyl bromide, 44	No-till agriculture, 54
Methylcellulose films, 187–190	No-till farming, 46–47, 51–54
Microbial, 142–143	Non-governmental organizations (NGOs),
activity, 187	359-360
counts of gram-positive, 144–145	Nonclimacteric respiratory rate, 102
fermentation, 294	Noncovalent bonds, 149–150
inactivation, 128	Nonpolar antioxidants, 136-137
vacuum, 44	Nonproteolytic enzymes, 291
Microbiological	Nonthermal food processing/preservation
growth, 171–172	technologies
organisms, 90	food contamination sources, 145–146
Micronutrients, 144	nonthermal emerging processing
Microorganisms, 149–150, 154–155,	technologies, 146-161
157-159, 203-204	high pressure processing technology,
Microsoft Visio 2016, 256	147–152
Microstructural properties of polymers, 186	pulse electric fields, 156-161
Microwave heating, 128–129	ultrasounds, 153–156
Milk	quality indicators for processed food,
functional aspects, 158	143-145
products, 251	Nordic Nutrition Recommendations, 329-330
Milpa system, 59	Northern communities, cold chain in,
Mineral balance hypothesis, 45–46	220-221
Minerals, 144, 373	NPK. See Nitrogen, phosphorus, and
Minimum tillage, 42–43, 46, 51–53	potassium (NPK)

Nucleation protein, 126	PEF. See Pulse electric fields (PEF)
Nutraceuticals, 143	Peptides, 292
Nutrient	Perishable food products, 215–216
loss, 252–255	Perishable organic materials, 371
nutrient-dense foods, 37–38	Perishables product, 90–92
Nuts, protection of, 134	Pest(s)
•	control protocols, 95–96
0	synthetic fertilizer effects on, 45–46
Oat mill waste, 299	Pesticide treadmill, 64
Observation, 11	Petroleum-based polymers, 173
Ohmic heating, 127–128	pH variations, 175
Oil(s)	PHFL. See Postharvest food loss (PHFL)
crops and pulses, 293, 300-301	Phosphorous, 373
extraction, 142–143	Physical injuries, 93
protection, 133-134	Physical methods, 191–193
Olive pomace, 293	Physical quenchers, 132
On-farm postharvest systems, 105–108	Physiological maturity of agricultural
farmer organization, value addition, training,	commodities, 101
and access to market, 108-110	Pigweed (Amaranthus spp.), 68–69
on-farm handling and storage, 107-108	Pineal gland, 289
Open storage system, 108	Plant-origin waste valorization, 281,
Optimality, respective decisions on,	292–303. See also Animal waste
349-351	valorization
Organic acids, 294	cereals, 292, 294-299
Organic agriculture, 47, 54	fruit and vegetables, 293, 302-303
Organoleptic characteristics, 142	oil crops and pulses, 293, 300-301
Out-of-home food waste, 20	roots and tubers, 292–293, 299–300
Oxidation	strategies, 294–303
of food products, 132	Plasma, 289
oxidized starch, 190	Plasminogen, 289
process, 171–172, 178, 180	Plasticizer—polymer chains, 193
Oxygen	Plate freezing method, 125
absorbers, 136	Ploughing, 47
interceptors, 136	Polyethylene (PE), 173, 299
Ozone (O_3) , 39	Polyethylene terephthalate, 173
depletion, 332	Polyhydroxyalkalonates, 299
1	Polymers, 173
P	Polypropylene (PP), 173, 299
PA. See Precision agriculture (PA)	Polysaccharides, 173
Packaging, 324–325, 325t, 349–350	Polystyrene (PS), 173
development, 171–172	Polyunsaturated fatty acids (PUFA), 290
protection of packaged foods, 136–137	POs. See Producer organizations (POs)
sector, 172–173	Postconsumer food losses, 232
Packing material, 150	Postharvest. See also On-farm postharvest
Pascal's isostatic principle, 147	systems; Preharvest systems
Pasteurization, 120–121, 121 <i>f</i> , 146, 150	food loss causes in postharvest
liquid eggs, 159	management, 91t
PE. See Polyethylene (PE)	handling, storage, processing, and
Pectin 302	distribution 231

losses/waste, 4, 16–18, 18f	Profitability, 67
processing and transport solutions,	Progesterone, 289
235-236	Prooxidants, 135
storage and handling solutions, 235	Proteases, 294
Postharvest food loss (PHFL), 228	Protecting Americans from Tax Hikes Act
Potato beans (Apios americana), 96–97	(2015), 382
Power US. See High-intensity US	Protein(s), 149–150, 173. See also Lipid(s)
PP. See Polypropylene (PP)	amine groups, 136–137
Precision agriculture (PA), 67–68. See also	protein—lipid interactions, 149—150
Conservation agriculture (CA)	Proxy data (P), 11
Precision farming, 35	PS. See Polystyrene (PS)
Precooling, 205–207	Psychrophiles, 124
Preharvest systems, 93–98	Psychrotrophs, 124
cultivar and environment, 93–95	PUFA. See Polyunsaturated fatty acids
diversifying crop production, 96–97	(PUFA)
factors affecting postharvest quality of	Pulse electric fields (PEF), 142, 156, 157 <i>f</i>
agricultural production, 94t	advantages and limitations, 160
improving agronomic and cultural	effect on food composition,
practices, 97–98	microorganisms, and applications,
integrated pest and disease management,	157–159
95–96	as extraction method, 160–161
Prescription farming. See Precision	technological fundamentals, 156–157
agriculture (PA)	Purchase, 349–350
Pressure, 150	Push–pull strategy, 57
boost, 147	rush pull strategy, 57
maintaining, 147	Q
relief, 147	Q_{10} concept, 123, 123 f
Price	Quality indicators for processed food, 143–145
actions, 361	Quality indicators for processed rood, 145–145
price-reduction of suboptimal food,	R
364–365	Radio frequency (RF), 120
Primary production	heating, 129–130
food losses in, 230	Rail transportation, 209
solutions, 233–235	Reduced tillage, 49, 56
agroecology, 235	Reductive soil disinfestation. See Anaerobic
collaboration and collective action at	soil disinfestation
producers stage, 234	Reefers. See Specialized refrigerated
training of producers, 234	containers
value-added and high-quality products,	ReFED, 370, 376–377
234–235	Restaurant Solution Matrix, 381–382,
Priorities in food waste valorization,	381 <i>f</i>
281–282	REFRESH project. <i>See</i> Resource Efficient
Producer organizations (POs), 234	Food and dRink for Entire Supply
Product	cHain project (REFRESH project)
labeling modification, 236–237	
product-specific handling requirements,	Refrigerants, 325 Refrigeration, 204
	capacities, 217–219
211, 212 <i>f</i>	
stewardship, 242	sea transportation, 207–209
value chain, 90	warehouse capacity, 217, 217t

Renewable energy sources, 219	Shell waste, 290
Resilience supply chain, 242–244	Singlet oxygen quenchers, 131
Resource Efficient Food and dRink for	Site-specific crop management.
Entire Supply cHain project	See Precision agriculture (PA)
(REFRESH project), 2–3	Small-scale anaerobic digestion, 237
Respiration rate, $102-103$, $103t$	Smoke, 135–136
Retail(er), 324-325	SOC. See Soil organic carbon (SOC)
actions	Social sustainability, 283
consumer response to, 363–365	Soil
against food waste, 359-363	amendment practice, 294
display at, 214-215	compaction, 35–36, 51–52
food losses, 232	and crop management
solutions at retailers stage, 236-238	agricultural practices for sustainable
change of consumers food waste	agriculture, 46–63
behavior, 237	cropping biodiversity to reducing losses
donations, recycling, and composting, 237	and increase yields, 63–67
modification of product labeling,	food security enhancement by reducing
236–237	yield loss, 33–35
technological investments, 237-238	preserving soil health, 38–43
RF. See Radio frequency (RF)	technological approaches, 67–70
Rice blast fungus (Pyricularia oryzae),	unsustainable agricultural practices and
64-65	effect on yield loss, 43–46
Rice bran, 299	yield loss and food security, 35–38
Ridge tillage, 49, 53–54	degradation, 34–35, 39
Road transportation, 210	SOM role in preventing, 41–43
Room cooling, 206	erosion, 41, 43 <i>f</i>
Roots, 292–293, 299–300	control, 47–48
Rosemary oleoresin, 134–135	fatigue and yield decline, 43-45
4993 Rosmanox E, 134	flooding, 44
4942 Rosmanox, 134	fumigants, 44
	no-till farming impact on soil ecology, 52
S	organisms, 44
Salmonella spp., 145	quality, 39–41
S. typhimurium, 142–143	sterilization, 44
SCC. See Supply chain collaboration (SCC)	tillage, 41
SDGs. See Sustainable Development Goals	Soil health
(SDGs)	preservation, 38-43
Sea transportation, 207–209	land availability and soil quality,
Seafood, 284, 290-291	39-41
Seed	SOM role in preventing soil
certification schemes, 95-96	degradation and maintaining yields,
oil, 302	41-43
Self-cooling system, 175	synthetic fertilizer effects on, 45-46
Self-heating system, 175	Soil organic carbon (SOC), 42-43, 53,
Semicontinuous processes, 147–148	65-66
Semistructured questionnaire, 256	Soil organic matter (SOM), 35
Serotonin, 289	Soilborne plant pathogens, 44
Shelf life, 203	Solarization, 45
of product, 179-180	Solubility in water, 184-185

SOM. See Soil organic matter (SOM)	agricultural practices for sustainable
Sonochemical reaction, 154–155	agriculture, 46-63
Sonorex Super Ultrasonic Baths, 153-154,	development, 146
153 <i>f</i>	diets, 316
Sound(s), 153	food supply chain, 241-242
crop rotations, 44	packaging, 172-174
nonchemical methods, 44	across supply chain, 241–242
Soy pulp (Okara), 293	Sustainable agricultural practices, 37.
Soybeans, 293	See also Unsustainable agricultural
Specialized refrigerated containers,	practices
207-209	Sustainable Development Goals (SDGs),
Squash, 56, 59, 206	1-2, 250, 315-316
Stakeholder adoption of lean manufacturing	Swedish nutrition recommendations,
practices for FLW, 251	329–330
Starch-protein complex disintegration,	Sweet clover (Melilotus officinalis), 60
142–143	Sweet potato weevil, 95–96, 96f
Sterilization, 121-122, 146	Swine Health Protection Act, 383
Storage	Switchgrass (<i>Panicum virgatum</i>), 66
by consumers, 215–217	Synergies, 56, 235
at distribution center, 210–213	Synergists, 131, 133–134
Suboptimal food, 347–349	Synthetic agrochemicals, 56
consumer perception, 355–358, 356 <i>f</i>	Synthetic antioxidants, 131, 133
decisions on optimal vs. suboptimal food	Synthetic fertilizers, 46
by consumers, 350f	effects on pests and soil health, 45–46
definition and major categories, 351 <i>f</i>	effects on pests and son hearth, 13
food waste to, 347–348	Т
price-reduction, 364–365	Tangerine (Camellia reticulata), 95
and respective decisions on optimality,	Taurine, 290
349–351	TBHQ. See Tertbutylhydroquinone (TBHQ)
Succinic acid, 294	Technological approaches in agricultural
Sulfur dioxide (SO ₂), 159	practices, 67–70
Sunflower (<i>Helianthus annuus</i>), 66, 293	genetically modified crops, 68–70
Supply chain, 204, 227–228	precision agriculture, 67–68
solutions, 238–244	Temperature, 150, 175, 203
	Tensile strength (TS), 182
awareness of changing food standards	
and regulations, 238–239	Tertbutylhydroquinone (TBHQ), 131, 133–134 Texture traits, 93
collaboration across, 239–240	
developing resilience supply chain, 242–244	TGA. See Thermogravimetric analysis (TGA)
formation of communities of practice	TGs. See Transglutaminases (TGs)
and learning alliances, 240	Thermal destruction of microorganisms, 120
implement sustainability across supply	Thermal food preservation, 119–122
chain, 241-242	pasteurization, 120–121
technological and infrastructural	sterilization, 121–122
solutions, 240	Thermal processing, 122
TQM and lean, 241	of foods, 119
Supply chain collaboration (SCC), 239	Thermal resistance constant (z value), 120
Surveys method (S method), 11	Thermogravimetric analysis (TGA), 185
Sustainability, 233, 242, 283	Thermophiles, 124

Time temperature indicator (TTI), 236 Time/temperature food product profiles,	United States Department of Agriculture Economic Research Service (USDA-
214-215	ERS), 2
Tocomix D, 134	Unsustainable agricultural practices, 36f, 37–38
Tocopherols, 131–134, 136	and effect on yield loss, 43-46
Total quality management (TQM), 238, 241	soil fatigue and yield decline, 43–45
Traditional agroforestry systems, 60	synthetic fertilizer effects on pests and
Traditional intercropping systems, 58–59	soil health, 45–46
Transaction collaboration, 239	Unsustainable soil management, 42
Transglutaminases (TGs), 191, 291	Upstream supply chain, 229-231
Transport(ation), 204–205	food losses
methods, 236	in postharvest handling, storage,
solutions, 235–236	processing, and distribution, 231
and storage by consumers, 215-217	in primary production, 230
Treatment time, 150, 160	US. See Ultrasounds (US)
TS. See Tensile strength (TS)	USDA. See United States Department of
TTI. See Time temperature indicator (TTI)	Agriculture (USDA)
Tubers, 292–293, 299–300	USDA-ERS. See United States Department
	of Agriculture Economic Research
U	Service (USDA-ERS)
UHDE High Pressure (Germany), 148–149	Use phase, 325–326
Ultrahigh temperature milk (UHT milk), 256–260, 269–270	UV light, 192
aseptic tank holding, 264, 270	V
current state map for production,	Vacuum precooling, 207
260–264, 261 <i>f</i>	Valorization, 279–280. See also Food waste
distribution, 264	valorization
farmer level, 260-262	of animal waste, 284-292
processor level, 262-264	of plant-origin waste, 292-303
packaging, 264, 270	Value
sterilization + homogenization, 263–264,	addition, 108-110
269	perceptions, 355, 357
storage, 264, 270	value-added product, 234-235
Ultrasounds (US), 142	Value stream mapping (VSM), 252
advantages and limitations, 155	current state map for production of yogurt
effect on food composition,	and ultra-high temperature milk,
microorganisms, and applications,	260-264
154-155	dairy supply chain characteristics,
technical fundamentals, 153-154	256-260, 257t
ultrasound-assisted freezing, 126-127	as hot spot identification approach for
ultrasounds as extraction technique, 155–156	FLW assessments, 252–255
United Nations Environment Programme	hotspots and wastes and causes derived
(UNEP), 2-3	from agrifood studies, 253t
United States (US)	identification of FLW and destinations,
agricultural system, 373-375	264-270
US Federal Drug Administration, 383	methodology, 255-256
United States Department of Agriculture	Vanillin, 299
(USDA), 41	Variable rate technology. See Precision
Economic Research Service, 375	agriculture (PA)

Vegetables, 144, 203, 293, 302–303	X
protection, 135	Xanthan, 190, 300
Vegetarian diets, 330	gum, 292
Vermicomposting, 386	Xylitol, 299
Viable materials, 291	
Vicia faba, 64–65	Y
Vitamins, 144	Yehub nut (Cordeauxia edulis), 96-97
vitamin C, 159	Yield loss
VSM. See Value stream mapping (VSM)	food security, 35–38
	enhancement by reducing, 33–35
W	unsustainable agricultural practices, 36f
Waste	and effects, 43–46
hierarchy, 282	Yields
management approach, 369-370,	soil fatigue and yield decline, 43–45
373-374	SOM role in maintenance, 41–43
Waste and Resources Action Programme	Yogurt, 268–269
(WRAP), 2	cooling, 263, 269
Water, 161	current state map for production,
activity, 106	260–264, 261 <i>f</i>
content of foods, 136–137	distribution, 264
solubility in, 184–185	farmer level, 260–262
soluble antioxidant, 135–136	processor level, 262–264
Water vapor permeability (WVP), 184	fermentation, 263, 268
Web of Science, 6	mixing, 262, 268
Weeds ecology, 52	packaging, 263, 269
Weighing method (W method), 11	pasteurization + homogenization,
Wet animal feed production, 387	262–263, 268
Wheat (<i>Triticum aestivum</i>), 36, 39, 58, 90–92, 374	storage, 263, 269
bran, 299	Z
respiration rates, 102–103	Zero tillage. See Conservation agriculture
rust, 64–65	(CA)
Wheatgrass (Thinopyrum intermedium), 66	Zero waste (ZW), 369
Whey	FW, 375-376
isolate, 291	hierarchy of options for managing food
permeate, 292	losses and wastes, 376-386
powder, 291	LCA and systems analysis of food waste
protein concentrate, 291	management options, 387
valorization, 292	US agricultural system, 373-375
Windrow composting, 386	Zero Waste Systems (ZWS), 369
WRAP. See Waste and Resources Action	Zucchini, 206
Programme (WRAP)	ZW. See Zero waste (ZW)
WVP. See Water vapor permeability (WVP)	ZWS. See Zero Waste Systems (ZWS)